PLL as the FM Demodulator

- **Object:-** (a) Determine the lock-range and the Capture-range of the given PLL kit.
 - (b) Plot the demodulation characteristics (V_D vs Δf) and verify that the given PLL circuit is working as the Demodulator. Of the FM signal.

Apparatus Used:- 1. The PLL Kit,

- 2. A Function generator with digital frequency display (1 MHz)
- 3. A Dual Trace CRO (20 MHz)

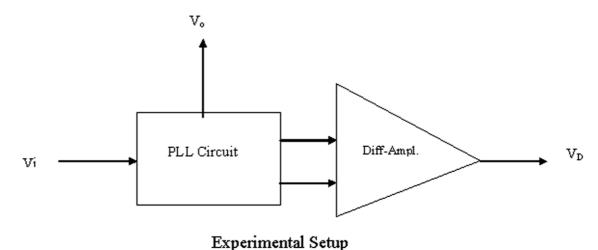


Figure 1

Figure 1 shows the experimental set-up & fig. 2 shows the Block-diagram of a PLL chip

BLOCK DIAGRAM

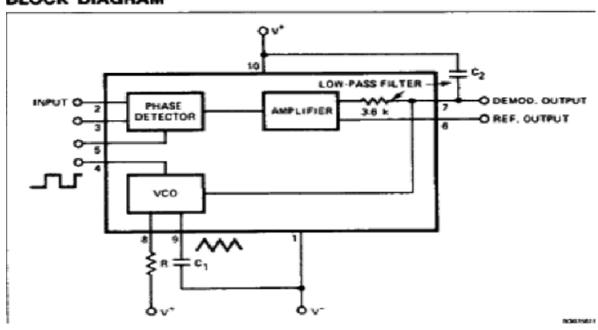


Figure 2

Theory: The functional characteristics of the PLL are described in the Data-sheet supplied by the manufacturer of PLL chip NE565. Refer to the data-sheet of NE565.

Observations:- (a) Free-running frequency, $f_0 = ------ KHz$; $(f_0 = 1/T_{o_0})$

$$f_1 = \dots KHz$$
; (L -- UL)

$$f_2 = \dots KHz$$
; (UL -- L)

$$f_3 = \dots KHz$$
; (L -- UL)

$$f_4 = \dots KHz$$
; (UL -- L)

(b) Lock-range
$$(f_L) = (f_{1-}f_3) = KHz$$

(c) Capture-range (
$$f_c$$
) = (f_{2} - f_{4}) = KHz; (Verify that $f_L > f_c$)

(d) Readings for Demodulation Characteristics:

S. No.	Incoming signal frequency (f _i)	DC Level of the Differential output (V _D)	$\Delta \mathbf{f} = (\mathbf{f_{i}} - \mathbf{f_{o}})$

 $Vi = a sinusoidal signal having variable frequency & amplitude around 8 volts p-p (obtained from an external signal generator) to be connected at input of the PLL marked <math>V_i$; for the purpose of determination of the lock-range, capture-range & the Demodulation characteristics of the PLL circuit.

Result:-

A curve between V_D versus Δf shows the Demodulation characteristics of the PLL and is linear, which justifies that the given circuit of the PLL (NE565) is working as a demodulator of a FM signal having maximum frequency deviation less than the lock-range of the PLL..

Report:-

- 1. Draw the circuit diagram of the PLL and give an expression for its free-running frequency.
- 2. Discuss the applications of the PLL in actual practice.

Circuit diagram of FM Demodulator using PLL NE565 / LM565
